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We present a novel self-consistent orbital-free method useful for quantum clusters. The method uses a
hydrodynamical approach based on the de Broglie-Bohm description of quantum mechanics to satisfy an
orbital-free density functional-like Euler-Lagrange equation for the ground state of the system. In addition,
we use an information theoretical approach to obtain the optimal density function derived from a series of
statistical sample points in terms of density approximates. These are then used to calculate an approximation
to the quantum force in the hydrodynamic description. As a demonstration of the utility and flexibility of the
approach, we compute the lowest-energy structures for small rare-glass clusters of argon and neon with 4, 5,
13, and 19 atoms. Extension to more complex systems is straightforward.

I. Introduction

Atomic and molecular clusters provide almost ideal “labora-
tory” systems for studying quantum versus classical dynamical
and structural effects as a function of the size and scale of a
given system. Such considerations are important especially
because the transition from microscopic to macroscopic (bulk)
is not always smooth. For instance, theoretical results indicate
a “coexistence region” of the liquid and solid phases in some
clusters1-4 and that quantum effects may suppress surface
melting in certain-sized clusters.5 Rare gas systems provide a
simple and effective way to study the underlying physics of
these transitions.5-7 Rare gas clusters and liquids are easily
enough modeled with classical molecular dynamics simulations;
however, treating the quantum dynamics of even small-sized
systems remains a formidable challange. Quantum corrections
are important even in equilibrium calculations and finite
temperature calculations because the quantum character strongly
affects the thermodynamics via changes in the ground-state
structure due to increasing zero-point energies.8 Quantum
corrections have been shown to lower solid-to-liquid transition
temperatures by approximately 10%, and the zero-point energy
for small clusters can equal up to 35% of the classical binding
energy, defined as the total potential energy divided by the
number of atoms.9 In light of these facts, the de Boer parameter,
Λ, can be used to determine the point at which quantum effects
will significantly alter the thermodynamic properties of Len-
nard-Jones systems.8-10

Any Lennard-Jones system can be defined in terms of its
potential depthε, its length scaleσ, and massm. For a given
set of parameters, the thermal de Broglie wavelength,λ ) p/σ

xmkBT, provides a means of approximating the quantum
effects at some reduced temperature of the system,T* ) kBT/
ε. Furthermore, taking the ratio ofλ for two different sets of
parameters provides a means of comparing the quantum effects
of one system versus the other. This leads to the de Boer
parameter,Λ ) p/rmxmε.11 In short, the de Boer parameter
measures the delocalization of the system compared to its size.

Λ has a classical limit ofΛ ) 0, and anything aboveΛ ≈ 0.3
is considered a quantum system.

For these systems, one could utilize exact quantum mechan-
ical methods, but it has long been recognized that the compu-
tational effort of grid-based quantum mechanical methods for
nuclear dynamical problems grows exponentially with the
number of degrees of freedom. This limits the size of systems
that can be handled in an exact manner to those with four or
fewer atoms. This is perhaps best illustrated in the field of
reactive scattering calculations, which have been limited to
systems with 6D12-15 and in other areas such as photodisso-
ciation processes.16,17In light of this, considerable progress has
been made in developing rigorous approaches for contracting
the basis size required to perform such calculations.

One such approach that has seen considerable success is the
multiconfigurational time-dependent Hartree approach (MCT-
DH) developed by Meyer and co-workers18,19 that overcomes
this limitation in a numerically exact way by expanding the time-
dependent wave function in terms of a number of time-
dependent configurations,

in which the single-particle (or quasiparticle) basis functions
ΦJ(t) and the expansion coefficients are coupled by the MCTDH
equations of motion. Unfortunately, the MCTDH approach has
difficulty with pairwise interactions, making it unsuitable for
Lennard-Jones clusters.

For condensed phase systems, path integral Monte Carlo
(PIMC) and centroid-based molecular dyamics remain the
method of choice. These approaches have been extremely
successful in calculating a wide variety of thermodynamic
properties of heavily quantum systems.8,10,20,21A number of
interesting results have emerged from these simulations. A
notable example of these is the lattice expansions under constant
pressure and temperature (NPT) conditions associated with the
quantum effects, which have a large effect on the binding energy
versus classical systems.22 Despite the success of PIMC ap-
proaches of late, there are some inherent difficulties. For
instance, at low temperatures, the number of parameters that
must be included can become prohibitive and lead to slow
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convergence. Also, the computational complexity is increased
by the extra degrees of freedom that arise in PIMC-derived
simulations.8

We present an approach that is appropriate for low-temper-
ature Lennard-Jones clusters and that will shed new light on
the origin and character of the quantum effects seen in these
systems. The method we will outline begins with the assumption
that the configurational densityn(r1,‚‚‚,rN) that describes the
statistical likelihood of finding the system in a given multidi-
mensional configuration{r1‚‚‚rN} can be written as a superposi-
tion of statistical approximatesp(r1‚‚‚rN, cm). These are the joint
probabilities for finding the system at{r1‚‚‚rN} and that the
configuration is a variant of some statistical distribution
described by the approximate. These approximates can be any
elementary probability density function that can be specified
in terms of its statistical moments,cm. The simplest of these
for our purposes are multidimensional Gaussians. We then use
a Bayesian analysis to deduce from a statistical sampling of
the density the best set ofm statistical approximates describing
that density.23 In addition, the algorithm also utilizes agrid-
free adaptive hydrodynamic approach for the relaxing of the
sample points that make up a statistical sampling of the density.
These are eventually relaxed to the quantum ground-state density
for the system ofN nuclei.

The approach is similar in some respects to hydrodynamic
density functional theory (DFT), which is the basis for time-
dependent density functional theories.24,25Hydrodynamic DFT
has been used to calculate, among other quantities, response
functions in large systems and second-order terms in the
perturbation theory for many electron systems.26,27 By taking
variations in the energy functional with respect to the density
and the current density, an Euler-Lagrange equation and a
continuity equation can be derived. These give the equations
of motion for the electron density. Under a time-independent
Hamiltonian, one is left with the Euler equation of static DFT,
similar to what we obtain.

As proof of concept, we will present the details of the ground
vibrational energy of small clusters of argon and neon. For
argon, the de Boer parameter isΛ ≈ 0.03. This corresponds to
an essentially classical system, and quantum effects can be
treated as a perturbation. For neon,Λ ≈ 0.1, indicating that
neon is aquasiquantumsystem. It is expected that the method
proposed will provide a useful way of determining any changes
in structure due to quantum effects such as zero-point energy
and tunneling. We confine the method at present to zero
temperature. Finally, we will discuss the results obtained.
Because the work at present is intended to illustrate the
usefulness of the method and not to compare to any benchmark
simulations, we compare our results to simple classical results.
We will also show how the approach we have outlined may be
used to develop new quantum-classical approaches for treating
quantum mechanical solute particles (such as an excess e- or
He atom) in a liquid of classical or quasiclassical atoms (such
as Ar or Ne).

II. Theoretical Development

We begin by writing the full many-body Hamiltonian for the
nuclear motion of a collection of atoms with pairwise interaction
potentials (atomic units are used throughout),

Corresponding to this, for an arbitraryN-body trial density, the

energy functional is given by

We have assumed that the density is separable into atomic
components, i.e.,

To reduce confusion, unless otherwise stated, all densities used
for the remainder of this work are separable “atomic” densities.

From the form of the kinetic energy operator, the kinetic
energy functional will also be a sum of individual functionals:

As in electronic structure DFT, evaluating the kinetic energy
functionals in an orbital-free form is problematic because the
quantum kinetic energy operator is a nonlocal operator and the
density is a local function.28

If we write the quantum wave function in polar form, as in
the hydrodynamic formulation of quantum mechanics,29-31

we can arrive at a stationary condition for the hydrodynamic
description if ∇φ ) 032, which, assuming single-particle
densities is

The first term on the left-hand side is the external potential.
The second is the quantum potential from the de Broglie-Bohm
or hydrodynamic formulation,33-36 which we shall notate asQ.
The constant is the energy for the stationary state of the system.
For stationary states, the forces from these potentials exactly
counterbalance each other53

By multiplying by the density (eq 3), the integrated form of
eq 6 gives a form for the kinetic energy functional in eq 4 as,

Integrating by parts and lettingni f 0 at (∞ produces the
familiar von Weizsacker kinetic energy functional37

Thus, the total energy functional is given in terms of the single-
particle densities as,

Taking the variation ofE[n] with respect to the single-particle

H ) - ∑
i)1

N 1

2mi

∇i
2 + ∑

i*j

V(ij ) (1)

E[n] ) T[n] + ∑
i*j

∫ ni(r )nj(r )V(ij ) dr (2)

n(1, ‚‚‚, N) )∏
i)1

N

ni(r ) (3)

T[n(1‚‚‚N)] ) ∑
i)1

N

Ti[ni(r )] (4)

Ψ(1‚‚‚N) ) xn(1‚‚‚N) eiφ(1‚‚‚N) (5)

V(1‚‚‚N) - ∑
i

1

2mi

1

xni(r )

∇i
2xni(r ) ) const (6)

∇Q + ∇V ) 0 (7)

T[ni(r )] ) - 1
2mi

∫ xni(r )∇i
2xni(r ) dr (8)

TW[ni(r )] ) + 1
8m∫ 1

ni(r)
∇ ıbni(r)·∇ ıbni(r ) dr (9)

E[n] ) ∑
i)1

N

TW[ni(r )] + ∑
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∫ ni(r )nj(r )V(ij ) dr (10)
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densities with the constraint that∑i ∫ ni(r ) dr ) N (or ∫ ni(r )
dr ) 1),

leads to the following Euler-Lagrange equations:

When satisfied,µ ) ∑iµi is a stationary vibrational-state energy,
and theni(r ) ) |φi(r )|2 are the probability densities of the
individual nuclei.

Let us take a simple pedagogic case of a particle in a harmonic
well, taking the trial density to be a Gaussian,n(x) ) xa/π
exp(-ax2). Evaluating the energy functional yields:

Minimizing with respect to the trial density,

yields the familiarE ) ω/2 anda ) mω. This idea is easy to
extend beyond purely harmonic systems and Gaussian trial
functions. Becauseni(r ) is a probability density function, it is
a positive, real, and integrable function.

In the following section, we show how the single-particle
densities can be estimated as superpositions of single-particle
density approximates based upon a statistical sampling of the
densities.

III. Mixture Modeling

Consider an ensemble of sample points,R ) {r1,...,rK}, that
statistically represents a multidimensional quantum probability
density. The corresponding probability density function (PDF)
can be represented by a mixture model38,39by summing a finite
numberM of density approximates. This is expressed as a sum
over joint probabilities,

wherep(r , cm) is the probability that a randomly chosen member
of the ensemble has the configurationr and is a variant of the
mth approximate designated bycm. These approximates may
be Gaussians or any other integrable multidimensional function
that can be parametrized by its moments. For Gaussian clusters,
we have a weightp(cm), a mean position vectorµm, and a
covariance matrixCm.

The assumption that the density can be split into a sum of
approximates is exact in the limit of infinite approximates. In
general, one looks for the smallest number of approximates
necessary to describe the system of interest. We know that, for
a Gaussian density packet on a parabolic surface, only one
approximate is needed and is exact. For the present system, we
assume that, for the ground state, the densities remain confined
near the bottom of the Lennard-Jones potential well. Please
note that the formation of nodes will not be problematic as in

dynamical simulations because we are limited to eigenstates and,
in particular, the ground state. The ground state is rigorously
node free for bosonic systems. Consequently, we expect that,
at most, only a few Gaussian approximates will be needed for
the ground-state calculation.

The number of parameters needed to describe the ap-
proximates is directly related to the physical assumptions made
about the system. If we assume that the Gaussian components
for each atom are separable, then we only need to be able to
specify m(3N(3N + 1)/(2 + 3N + 1)) ) O(mN2) variables.
These correspond to the elements of the covariance matrix, the
central mean, and amplitude form 3N-dimensional Gaussians.
Also, explicit correlations between various degrees of freedom
can be excluded in a straightforward way by factoring the
approximates that describe a particular atom. We can then
expand the atomic densityni(r ) as a linear combination of
density approximates,

for the i atoms of the system. This dramatically reduces the
number of coefficients we need to determine tomN× (6 + 3
+ 1) ) O(mN). Intermediate factorization schemes yield similar
scaling behavior, allowing one to tune the computational
complexity of the system depending upon the degree of
correlation required by a particular physical problem. For
example, one can definequasi-atomsby explicitly including
covariance between the degrees of freedom of two or more
atoms.

By definition, each joint probability in eq 13 is related to a
pair of conditional probabilities according to the relation

where the forward conditional probabilityp(r |cm) refers to the
probability that a randomly chosen variant ofcm has the 3N
dimensional configurationr . Conversely, the posterior prob-
ability p(cm|r ) refers to the probability that the configuration
point r is a variant of the approximatecm. In probability theory,
n(r ) andp(cm) are known as marginal probabilities; however,
we shall simply refer to them as the quantum density and weight
of the mth approximate, respectively. The expansion weights,
p(cm), are strictly positive, semidefinite, and sum to unity. By
substituting the first equality of eq 15 into eq 13, we have,

We have considerable freedom at this point in specifying the
exact functional form of the conditional probabilities as well
as the degree of correlation within each conditional. This
freedom of specification allows us to construct “models” that
explicitly take into account nonseparable correlations in con-
figuration space. For the case of Gaussian approximates, this is
accomplished by keeping or discarding various off-diagonal
terms incorporated in the covariance matrix,C,

||Cm
-1|| is the reciprocal of the greatest value of the determinant

of the covariance matrix, and the subscript indicates that this is
the covariance matrix corresponding to themth approximate.

δ{∑
i)1

N

(TW[ni(r )] + ∑
j*i

∫ ni(r )nj(r )V(ij ) dr -

µi(∫ ni(r ) dr - 1))} ) 0 (11)

δTW[ni(r )]

δni(r )
+ ∑

j*i
∫ V(ij )nj(r ) dr - µi ) 0 (12)

E[n(x)] ) 1
4m

a + mω2

4a

δE[n]
δn

) dE
da

) 0

n(r ) ) ∑
m

M

p(r , cm) (13)

ni(r ) ) ∑
m)1

M

pmi(cmi, r ) (14)

p(r , cm) ) p(cm)p(r |cm) ) n(r )p(cm|r ) (15)

n(r ) ) ∑
m

M

p(cm)p(r |cm) (16)

p(r |cm) ) x||Cm
-1||

(2π)3N
e-(rd-µm,d)T·Cm

-1·(rd-µm,d) (17)
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If the covariance matrix is real and symmetric, then it is possible
to construct a model that assumes that each approximate is
completely separable and takes the form of a product over the
3N-dimensional configuration space. In this case, the covariance
matrix, Cm, reduces to a variance vector,σm,d

2 , and the forward
conditional probability becomes

Numerical tests by Maddox and Bittner indicate that the
separable case is computationally faster for high-dimensional
systems, but produces a less-accurate estimate of the quantum
ground-state energy.23 For larger systems, the separable case
will certainly speed up calculations. As expected, there is a direct
connection between the covariance matrix form and the form
of the density assumed in eq 3. We also note that it is feasible
to construct any combination of covariant and separable degrees
of freedom if there is some reason to do so on the basis of the
symmetry of any physical problem. For a discussion of the
strengths and weaknesses involved with mixture models, one
is referred to refs 23, 40.

Once a model is decided upon, one must then determine the
parameters, in this case, the Gaussian parametersp(cm), µm, and
Cm, for each approximate from the statistical points representing
the density. For instance, the mean position vectors of the
approximates are defined by the moments of the forward
conditional probabilities,

By rearranging eq 15 and substituting into eq 19, we can write
this as

This is easily approximated by taking a Monte Carlo integration
over the ensemble of points{r k} sampled from then(r ) PDF,

We also define similar expressions for both the covariance
matrix and the expansion weights in the following:

For the case of separable approximates, the variances are given
by the diagonal elementsσm,i

2 ) (Cm)ii. The posterior terms
p(cm|r k) for eachr k sample point in eqs 21-23 are evaluated
directly from the forward probabilities according to Bayes’
equation,

Within this viewpoint, the sample points can be considered
to be a data set that represents the results of a series of successive
measurements. Each data point carries an equal amount of
information describing the underlying quantum probability
density function. Bayes' equation gives the ratio of how well a
given approximate describesr k to how well r k is described by
all of the approximates. Thus, it represents the fraction of
explanatory information that a given sample point gives to the
mth approximate. The approximate thatbestdescribes the point
will have the largest posterior probability at that point. Equations
21-24 can be iterated self-consistently in order to determine
the best possible set of parameters that describeni(r ) in terms
of a given ensemble of data points. In doing so, we effectively
maximize the log-likelihood that the overall density model
describes the entire collection of data points,

Taking the variation ofL with respect to the model parameters
generates a series of update rules for moving the approximates
through parameter space in the direction along∇cbmL.38 For the
case of Gaussian approximates, the update rules for the mean,
covariance matrix, and marginal probabilities are given by,

Where X is the Kronecker product,Ω is the vector of all
expansion weights,Ω ) [p(c1),..., p(cm)]T, and diag[Ω] is a
matrix with the elements fromΩ constituting the diagonal
entries.41

We will now show how the coefficients (rather moments) of
the approximates can be optimized to compute both the ground-
state energy and ground-state single-particle densities.

IV. Relaxing the Sample Points

The next step in our approach is to generate the appropriate
equations of motion to evolve the sample points either in real
or imaginary time. The quantum Hamilton-Jacobi equation
generates the equations of motion for the ray-lines of a time-
dependent solution to the Schro¨dinger equation.33-36

Because the density is separable into components, we easily
arrive at a set of time-dependent self-consistent field equations
whereby the motion of atomi is determined by the average
potential interaction between atomi and the rest of the atoms

p(r |cm) ) ∏
d

3N x 1

2πσm,d
2

e-((rd-µm,d)2/(2σm,d
2)) (18)

µm ) ∫ rp(r |cm) dr (19)

µm ) ∫ r
n(r )p(cm|r )

p(cm)
dr (20)

µm ≈ 1

Kp(cm)
∑

k

K

rkp(cm|rk) (21)

p(cm) ≈ 1

K
∑

k

K

p(cm|r k) (22)

Cm ≈ 1

Kp(cm)
∑

k

K

(r k - µm)(r k - µm)Tp(cm|r k) (23)

p(cm|r k) )
p(cm)p(r k|cm)

∑
m

p(cm)p(r k|cm)

(24)

L ) log ∏
k

n(r k)

δµm )
Cm

Kp(cm)
∇µbm

L

δCm )
2(CmXCm)

Kp(cm)
∇CBm

L

δp(cm) ) 1
K

(diag[Ω] - Ω(Ω)T)∇ΩBL

∂S

∂t
+ ∑

i

|∇ ıbS|2

2mi

+ ∑
i*j

∫ ni(r )nj(r )V(ij ) dr -

∑
i

1

2mi

1

xni(r )

∇i
2xni(r ) ) 0 (25)
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in the system,

Taking ∇SB ) p ) mir3 as a momentum of a particle, the
equations of motion along a given ray-line or characteristicr k-
(t) of the quantum wave function are given by

whereQ[ni(r )] is the Bohmian quantum potential specified by
the last term in eq 26. Recall in the last equation that ther k’s
are the sample points that constitute the density for a given atom.
Stationary solutions of the time-dependent Schro¨dinger equation
are obtained whenevermir1k ) 0. Consequently, by iteratively
relaxing the sample points in a direction along the energy
gradient specified by

one obtains a minimal energy self-consistent field density for
the ith atom.

To calculate the ground vibrational-state energy of the system,
we need to include an artificial damping to the Hamiltonian of
the system. In this case, the total force on a particle at any given
step is given by,

whereγ represents a small dissipative coefficient andfq, fc are
the forces arising from the quantum and mean-field forces given
in eq 27 above. The damping causes some kinetic energy loss
at each step in the simulation. For a classical case, the ensemble
points would collapse to aδ function(s) centered about the
minimum energy point(s) of the potential surface for the particle-
(s). For the present case, as the distribution narrows, the quantum
force gets larger, forcing the ensemble to maintain some finite
width. The sample points eventually converge to an equilibrium
that corresponds to the ground-state quantum density from which
the ground-state energy is derived.

This process is similar to the semiclassical approximation
strategy for including quantum effects into otherwise classical
calculations introduced by Garaschuk and Rassolov.42,43 This
semiclassical approximate methodology is based upon de
Broglie-Bohm trajectories and involves the convolution of the
quantum density with a minimum uncertainty wave packet that
in turn is expanded in a linear combination of Gaussian functions

The Gaussian parameterss ) {cn, Xn, an} in eq 30 are
determined by minimizing the functional

using an iterative procedure that explicitly involves solving the
set of equations∂F/∂sk ) 0. The parametrized density leads to
an approximate quantum potential (AQP) that is used to

propagate an ensemble of trajectories. This approach has been
used successfully in computing reactive scattering cross-sections
for the collinear H+ H2 reaction.

It is important at this point to recognize the numerical
difficulties our group and others have faced in developing
hydrodynamic trajectory-based approaches for time-dependent
systems.23,36,44-47 The foremost difficulty is in the accurate
evaluation of the quantum potential from an irregular mesh of
points.44,46 The quantum potential is a function of the local
curvature of the density and can become singular and rapidly
varying as nodes form in the wave function or when the wave
function is sharply peaked, i.e., whenn1/2 f 0 faster than∇2n1/2

f 0. These inherent properties make an accurate numerical
calculation of the quantum potential and its derivatives very
difficult for all but the simplest systems. For a comprehensive
discussion of different aspects regarding quantum trajectories
and nodes, see refs 32, 48. These difficulties are avoided in the
cluster model approximation of the density by using the
expectation maximization (EM) algorithm.23 By obtaining a
global optimal function that describes the density, we can
analytically compute the quantum force with great accuracy.
The issue of nodes is essentially avoided so long as we are
judicious in our choice of density approximates. If we choose
node-free approximates, then our overall density will likewise
be node free. For the purpose of determining vibrational ground-
states, this seems to be a worthwhile compromise.

In summation, we will give a synopsis of the algorithm. We
first initialize the system. This involves, for each atom,
generating and sampling a normalized trial densityni(r). We
then iterate through the following steps:

1. By using the EM routines and the given sample of points,
compute the coefficients for the density approximates.

2. Compute the forces on each point by using eq 28 with eq
29 and advance each point along the energy gradient for one
step. This generates a new sample of points describing the
single-particle density for each atom. The new distribution
should have a lower total energy since we moved the sample
points in the direction toward lower energy.

3. Check for convergence and repeat if necessary.

V. Vibrational Ground State of Rare-Gas Clusters

As we discussed above, rare gas clusters provide a set of
well-defined test cases for new quantum and mixed quantum-
classical methods. Here, we focus our attention on determining
the quantum equilibrium ground states for argon and neon
clusters with up to 19 atoms. In the calculations presented here,
we used 300 statistical points to represent the density of each
atom and propagated the SCF equations described above until
the energy and the density were sufficiently converged. Typi-
cally, this required 1.5-3 million cycles. Along the course of
the energy minimization, we strongly damped the time evolution
of the sample points to eliminate as much of the oscillations
and breathing of the density components as possible.

The Lennard-Jones parameters for the argon clusters areε

) 0.9976 kJ/mol andσ ) 3.42 Å, andε ) 0.3059 kJ/mol and
σ ) 2.79 Å for the neon clusters.49 Initial configurations for
the simulations are chosen to be close to the classical molecular
dynamics minimum-energy geometry and are given some initial
Gaussian spread.

We show in Figure 1 isodensity (0.006) contour plots for the
Ar4, Ar5, Ne4, and Ne5, http://eiger.chem.uh.edu:8080/web-
Mathematica/pchem-apps/Plot3DLive.jsp.54 One can see quite
clearly the underlying three-dimensional shape of the cluster
along with the delocalization of each atom about its central

Ṡ(i) +
|∇ ıbS|2

2mi

+ ∑
j*i

∫ V(ij )nj(r ) dr

- 1
2mi

1

xni(r )
∇i

2xni(r ) ) 0 (26)

mi r1k ) - ∑
j*i

∫ (∇VB(ij ))nj(r ) dr - ∇QB[ni(r )] (27)

∇ ıbE ) - ∑
j*i

∫ (∇VB(ij ))nj(r ) dr - ∇QB[ni(r )] (28)

v3 ) fq + fc - γv (29)

F(x) ≈ f (x) ) ∑
n

cn
2 exp[-an

2(x - Xn)] (30)

F ) ∫ [F(x) - f (x)]2 dx (31)
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location. Each density “lobe” is nearly spherical with some
elongation. These density plots give a suggestive view of the
overlap of the densities, which is ignored in eqs 3 and 9. For
the systems at hand, this overlap turns out to be minor, but for
atoms such as Helium, this would have to be taken into account.

It has been noted in the literature22 that lowering the mass,
which results in increasing the quantum effects, will result in
delocalization through the increase in the zero-point kinetic
energy of the system. Under NPT conditions, this would result
in two competing effects, the tendency to minimize the potential
energy, and the tendency of the atoms to spread to minimize
the quantum kinetic energy by increasing the volume. One
expects a net volume increase as the nuclear ground-state wave
function spreads out to minimize the quantum kinetic energy.
This also leads to a net decrease in the binding potential energy
because the atoms are effectively further apart. Also, there may
be tunneling between mainly iso-energetic configurations
separated by low-energy barriers. In summary, when quantum
effects are present, the decrease in the binding potential energy
and the quantum fluctuations lead to what is known as a
softening of the crystal and a reduction of its melting temper-
ature.

A similar interplay can be seen in the present method. In
Figure 1, each atomic density has a finite width. This can be
contrasted with the classical case that hasδ functions represent-
ing the atoms. This spread is maintained by the kinetic energy
term in the Hamiltonian through the quantum potential. In this
sense, the quantum potential term is a measure of the quantum

character of the system and provides an intuitive way to
understand softening of crystals.

In Figure 2, we show the total energy and the total potential
energy for the Ar5 and Ne5 clusters as the system converges
toward its lowest-energy state. Initially, there is a rapid
restructuring of the densities as they adjust to find a close
approximation to the actual ground-state density. Following this
initial rapid convergence, there is slower convergence phase as
the density is further refined. During this process, as the sample
points look for a configuration that fully equalizes the quantum
and kinetic energy terms from eq 6, the density approximation
can sometimes prove inadequate and points can be pushed into
temporary higher-energy regions. This leads to the fluctuations
seen in the energies and any other averaged quantity such as
the interatomic distances. To compute meaningful values for
the energy and distances, we averaged these quantities over the
last half million or so cycles. As can be seen from Figure 2,
the Ne5 cluster is slower to converge, but eventually does so
after roughly 200 million iterations.

Tables 1 and 2 list the averaged interatom distances for each
cluster compared to the equilibrium distances for the corre-
sponding classical case. For the case of Ar5, the numerical
fluctuations lead to an uncertainly of about 0.3% in the
interatomic distances and for Ne5, a 0.5% uncertainty in the
interatomic distances. These fluctuations are simply the root-
mean-square of the values calculated. It is important to note
that the fluctuations mentioned here tend to decrease with
increasing system size, as can seen by comparing the results
for Ar5 with Ar4. This has important implications because we
hope to extend this method to larger systems. Ne4 can be seen
to have the largest fluctuations. This is expected because it is

Figure 1. The isodensity contour plots of the clusters at a value of
0.006. In the upper left is the Ar4 cluster, in the upper right is the Ne4,
lower left has the Ar5, and then bottom right is Ne5. The axes are listed
in atomic units.

Figure 2. The average potential energy〈V〉 and total energy〈Q〉 + 〈V〉 of the Ar5 and Ne5 clusters in kJ/mol. The steps are measured in millions.

TABLE 1: Interatomic Distances for X 5 Clusters in
Angstroms

distances argon argon (cl) neon neon (cl)

rd1,2 3.884( 0.010 3.822 3.262( 0.023 3.135
rd1,3 3.875( 0.009 3.822 3.234( 0.016 3.135
rd1,4 3.855( 0.009 3.808 3.204( 0.018 3.124
rd1,5 3.845( 0.008 3.808 3.199( 0.014 3.124
rd2,3 3.882( 0.012 3.822 3.259( 0.029 3.135
rd2,4 3.849( 0.009 3.808 3.205( 0.020 3.124
rd2,5 3.853( 0.008 3.808 3.211( 0.018 3.124
rd3,4 3.843( 0.009 3.808 3.233( 0.031 3.124
rd3,5 3.846( 0.008 3.808 3.214( 0.018 3.124
rd4,5 6.259( 0.010 6.208 5.209( 0.020 5.092

TABLE 2: Interatomic Distances for X 4 Clusters in
Angstroms

distances argon argon (cl) neon neon (cl)

rd1,2 3.894( 0.012 3.814 3.262( 0.022 3.13
rd1,3 3.859( 0.008 3.814 3.229( 0.026 3.13
rd1,4 3.858( 0.010 3.814 3.222( 0.025 3.13
rd2,3 3.872( 0.011 3.814 3.248( 0.020 3.13
rd2,4 3.864( 0.008 3.814 3.214( 0.014 3.13
rd3, 4 3.854( 0.008 3.814 3.223( 0.021 3.13
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the most quantum mechanical. All in all, these values compare
well with the classical distances. In general, the quantum
distances are slightly larger due to the fact that the Gaussian
atom densities are sampling part of the anharmonic repulsive
portion of the pair potential.

Table 3 summarizes the various contributions to the total
energy for each cluster. The “classical” energies,Vc, are the
energy minimum of the total potential energy surface corre-
sponding to the classical equilibrium configuration, and they
are obtained from the same code we used for the other quantum
simulations but withp turned to zero. This corresponds to a
classical molecular dynamics simulation, the implications of
which are discussed later.〈V〉, 〈Q〉, and〈E〉 are the total quantum
potential energy, kinetic energy, and total energy of each cluster,
respectively. The difference between the classical potential
minimum, Vc, and 〈E〉 is the zero-point energy, labeledE0 in
the table. One can see that the zero-point energies for the Ne4

and Ne5 systems account for 43.66 and 39.68%, respectively,
of the total energy. We also calculate a virial-like term, which
is the ratio of the kinetic to the potential energy of the system,
〈Q〉/〈V̂〉, where〈V̂〉 ) 〈V〉 - 〈V0〉. 〈V0〉 is the limit of the potential
energy at infinite separation. The kinetic term here is the
quantum potential because the translational energy has been
siphoned away. For larger systems, this ratio is expected to fall
because the zero-point energy should become less important,
and that is what is observed in the results.

In addition to the results for the small 4- and 5-atom clusters
we have presented above, we also considered much larger 13-
and 19-atom clusters of neon. These larger calculations are
particularly challenging because the total number of degrees of
freedom are considerably way beyond that which can be handled
by standard grid-based techniques. These clusters correspond
to the smallest “magic” number clusters that exist for Lennard-
Jones systems and are particularly interesting because they have
both interior (caged) and exterior (cage) atoms. The lowest-
energy 13-atom cluster takes an icosahedral geometry with the
12 exterior atoms lying at the vertexes and the central caged
atoms at the origin. Similarly, the 19-atom cluster is more of a
prolate icosahedron with one extra band of 5 atoms and two
interior atoms. Figure 4 shows the equilibrium positions of the
atoms for both clusters. In performing the quantum calculations
for these larger clusters, we used 200 sample points versus 300
used for the smaller clusters and used the equilibrium positions
as staring points. In all other respects, the calculations proceeded
as above.

The convergence with respect to total energy for the two
larger neon clusters can be seen in Figure 3 with the final
converged values given in Table 4. The large shoulder in the
convergence of the 13-atom cluster was due to a small
rearrangement of the atoms as the system relaxed. The virial
term remains about the same as in the case of the smaller
clusters. Furthermore, the zero-point energy for the clusters is
40.1% of the classical energy for the 19-atom cluster and 44.1%
for the 13-atom cluster respectively. Also note that theVc values
for these larger clusters were obtained from the literature.50-52

Figure 4 also shows a snapshot of sample points for each
cluster (2600 and 3800 points, respectively) in their lowest-
energy quantum states. Recall that the classical sample points
represent entire atoms, but the quantum sample points make
up the quantum density “cloud” of each nuclei. In both cases,
the quantum density of the interior atoms is more tightly
compressed than the quantum density of the atoms on the surface
of the cluster. Furthermore, notice that the mean position of
the quantum atoms is farther away from the center of the cluster
than in the classical case. Averaging over the exterior atoms,
the quantum 13-atom cluster has a radius of 3.113 Å versus
3.017 Å for the classical case. This 3% increase in the radius
results in nearly 20% increase in the volume of the cluster. A
similar effect can be noted for the 19-atom cluster.

Figure 3. Convergence of the 13- and 19-atom clusters of neon. The energy is in kJ/mol and the steps are given in millions.

TABLE 3: Converged Ground-State Energies for 4- and 5-Atom Clusters in kJ/mol

Ar4 Ne4 Ar5 Ne5

Vc -5.986 -1.827 -9.083 -2.772
〈V〉 -5.668( 0.112 -1.592( 0.028 -8.630( 0.114 -2.447( 0.117
〈Q〉 0.462( 0.032 0.460( 0.034 0.689( 0.041 0.646( 0.036
〈E〉 -5.205( 0.099 -1.132( 0.013 -7.940( 0.098 -1.801( 0.0005
E0 0.781 0.695 1.143 0.971
〈Q〉/〈V̂〉 0.082 0.288 0.079 0.263

TABLE 4: Converged Quantum Ground-State Energies of
the Larger 13- and 19-Atom Clusters in kJ/mol

Ne13 Ne19

Vc -13.559 -22.226
〈V〉 -10.928( 0.153 -18.472( 0.193
〈Q〉 2.188( 0.081 3.651( 0.034
〈E〉 -8.740( 0.099 -14.821( 0.133
E0 4.819 7.405
〈Q〉/〈V̂〉 0.200 0.197

Figure 4. Thirteen and 19-atom clusters with the quantum sample
points in yellow overlaid on the classical equilibrium positions in black.
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This expansion has really two origins. First, quantum me-
chanical expectation value of the position〈r〉 for any single atom
will always be greater than the classical equilibrium position
for any anharmonic and dissociative potential well. However,
this does not wholly account for the 3% increase in mean radius.
Rather, the increase is also due to the interiorquantum pressure
of the trapped atom pushing against the surrounding cage. The
cage expands until the strain on the cage is equal and opposite
the force exerted on the cage as the trapped atom’s density
expands.

If we consider the trapped atom as a particle in a spherical
well with radiusR, the pressure exerted on the walls is easily
computed by using the reversible work theorem as dW ) PdV
) 4πR2PdR ) - dE(R), from which one can easily deduce
that the quantum pressure of the trapped particle is55

Finally, if we take the actual well that the center Ne atom
sits in from the surrounding 12 atoms to be quite steep with an
effective hard-sphere radius of about 1 Å, we obtain an internal
pressure of 0.013 kJmol-1 Å-1. This small, but significant,
outward force is sufficient to expand a 12-atom cluster by a
small amount until the strain due to the expansion becomes large
enough to counter the internal quantum pressure of the trapped
atom.

VI. Discussion

A method for calculating ground-state configuration of
quantum clusters and liquids has been outlined on the basis of
some previous work in approximating densities as quantum
statistical density functions. The quantum and the Lennard-
Jones potentials are used to propagate an ensemble of Monte
Carlo statistical points, in a DFT-like procedure. This is an
orbital-free approach in the sense that we only work at the level
of the nuclear density. To do this, we outline a “cluster” model
and an expectation maximization (EM) algorithm that is used
to obtain the density in terms of the statistical points representing
each atom. The Lennard-Jones potential is calculated in a
mean-field sense by averaging over the statistical points of each
atom, and the quantum potential is calculated from the density
obtained in the EM algorithm. Results were presented for 4-,
5-, 13-, and 19-atom clusters of argon and neon. The results
indicate good agreement with the general classical results, but
the quantum corrections can be seen to be significant.

The method outlined herein provides a means of artificial
control of the amount of quantum mechanical information
desired from a calculation. The covariances between the
approximates representing atoms may be set to zero as we have
done, but keeping the interatomic covariances seems to provide
a possible path to including other effects such as exchange and
correlation energies. This all comes at the expense of increased
complexity and reduced computational speed.

The method also opens the fascinating possibility of usingπ
as a parameter by which one can effectivelytune the amount
of quantum character given a specific atom. One can perform
the equivalence of thermodynamic integration by considering
the parametric dependence of the energy or structure of a system
upon the transition from the fully quantum to the mixed
quantum/classical regime. Additionally, one could surround one
or many “quantum” particles with a bath of larger classical
particles, which havep turned to zero and, therefore, are handled
with standard molecular dynamics methods. This situation has

each atom interacting in a mean-field sense so that the classical
particles feel the pairwise potentials of the quantum mechanical
particles “cloud” of sample points. So one can see that the
present approach can be inserted or added as a subroutine into
existing MD codes with relative ease. Then, by controllingp,
or which particles have quantum potentials, a variety of difficult
systems could be modeled. We shall explore these issues in
our forthcoming papers on this topic.
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